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Abstract: The paper discusses the application of VLSI technology to implement the functions of multi operand floating 

point addition in parallel using verilog, targeting it to a Xilinx FPGA. The multi operand floating point adders perform 

two additions in a single unit to achieve better performance and accuracy. To improve the performance and accuracy, 

several optimization techniques are applied. These are a new exponent compare and significant alignment, dual-

reduction, early normalization, three input leading zero anticipation and compound addition and rounding. The 

traditional fused floating point three term adder takes twice the area, power consumption and delay. In order to reduce 

the overhead the multi-operand floating point adder has been proposed. Which perform rounding only once, which 

improve the accuracy. 
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I. INTRODUCTION 

 

Arithmetic modulo2n+1 has found applicability in a 

variety of fields ranging from pseudorandom number 

generation and cryptography up to convolution 

computations without round-off errors. Also, modulo 

2n+1operators are commonly included in residue number 

system (RNS) applications. The RNS is an arithmetic 

system which decomposes a number into parts (residues) 
and performs arithmetic operations in parallel for each 

residue without the need of carry propagation among 

them, leading to significant speedup over the 

corresponding binary operations. RNS is well-suited to 

applications that are rich of addition/subtraction and 

multiplication operations and has been adopted in the 

design of digital signal processors FIR filters and 

communication components offering in several cases apart 

from enhanced operation speed, low-power characteristics 

[1]. 

A denser encoding of the input operands and simplified 

arithmetic operations modulo 2n+1 are offered by 
thediminished-1 representation. In the diminished-1 

representation, A is represented asaz A*, where az is a 

single bit, oftencalled the zero indication bit, and A* is an 

n-bit vector, oftencalled the number part. IfA> 0, then az= 

0 and A* =A -1,whereas for A=0; az=1, and A*=0. For 

example, thediminished-1 representation of A=5 modulo 

17 is 001002.Considering that the most common 

operations required in modulo2n+1arithmetic are negation, 

multiplication bya power of two and addition , the 

adoption of the diminished-1 representation, allows to 

limit these operationsto n bits. Specifically, negation is 
performed by complementing every bit of A*, if az= 0 and 

inhibitingany change when az=1 [2]. Multiplication by 2i 

is performed by an i-bit left rotation of the bits of A*, in 

which the reentering bits are complemented, if az =0 and 

inhibiting anychange when az=1 [3].  

Finally, the addition of azA* with bzB*,boils down to an 

n-bit modular addition of A* with B* withsome minor 

modifications.  

 

 

Modulo arithmetic appears to play an important role in 

many applications. The Residue Number System (RNS) 

[Sonderstrand et al. 1986, Bayoumi et al [4]. 1987, 

Elleithy and Bayoumi 1992, Koren 1993] is a first 

application field. A set of   moduli, suppose, that are pair-

wise relative prime is used to define a RNS. Any integer 

X,with MX 0  , where 
LmmmM  ...21

  

has a unique representation in the RNS, given by the L -

tuple of residues  LxxxX ,...,, 21  , where

ii mXx mod ,if 0X and   ii mXMx mod  

,if 0X  . A RNS operation, suppose*, is defined as

     LLL yyyxxxzzz ,...,,,...,,,...,, 212121  , where

  iiii myxz mod
[5]

. 

 

II. LITERATURE SURVEY 

 

"Modulo (2n+1) arithmetic logic",Agrawal D. P. and Rao 

T.R.N.et.al in this paper a novel format for representing 

module (2^n+1) number is shown to be helpful in 

achieveing modular addition and complementation logic 

for fast addition on using carry look ahead and modular 
complementation is done.Drawbacks of this method 

include the use of customised parallel prefix adder that 

cannot be replaced by alternative n bitadders.Thus 

exploration of design spacewith regard to 

area/speed/power tradeoffs must be performed a new for 

each design [6]. 

"Binary adder architectures for cell-based VLSI and their 

synthesis", Zimmermann R..et.al In this paper if we ignore 

the represention of o and concentrate only on the part, then 

efficient bits wide address can be constructed at the output 

of adder a row of multiplexers is added in order to select 

correct output.Demerits of this paper are delay of the 
multiplexers makes the delay of modulo channel greater 

than channels of the form and the required implementation 
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area is also increased substantially when compared against 

the other channels [7]. 

"Fast and flexible architectures for RNS arithmetic 
decoding".Elleithy K. M., and BayoumiM. A., et.al In this 

paper the decoder is flexible since the decoded data can be 

selected to either unsigned magnitude or 2’s complement 

binary number.Two different architectures are analyzed; 

the first one is based on using carry saved adders,while the 

other is based on utilizing module adders.Demerits are the 

CRT provides a direct, fast and simple conversion 

formula,the lack of large and fast modulo M adder has 

held back this approach [8]. 

 

A. Problem Definition 

Suppose that a number  X , with 
nX 20   , is 

represented by  1n  bits, as  
*

0

*

1

*

2

*

1

* ... xxxxxXx nnzz  , where zx   is the zero 

indication bit and 
*X   is the diminished-one 

representation of  X, that is : 










0 if ,1

0 if ,0

X

X
xz

and 








0 if      ,0

0 if 1,-
*

X

XX
X  

  

Obviously, 
zxXX  *

  (the   notation is used for 

logical negation). A  similarrepresentation was adopted in 

[Agrawal and Rao 1978]. If we decide to ignore the 

representation of 0 and concentrate only on the
*X   part, 

then efficient  n-bits wide adders can be constructed as 

proposed in [Zimmermann 1997, 1999, Efstathiou et al. 

2001, Vergos et al. 2001, 2002]. However, the need to 

treat 0 distinctly will result in a circuit as the one shown in 

fig 1 [9]. 

 

 
Fig. 1.The architecture of an adder that treats 0 as a special 

case. 

 

At the output of the adder a row of multiplexers is added 

in order to select the correct output. When none of the 

operands is zero (both   and   are 0) the output of the adder 

is propagated. When one of the two operands is zero, the 

other operand is allowed to propagate. When both 

operands are 0, the all 0s word is propagated. Logic also 

needs to be added for computing the zero indication bit 
zs  

, of the result.Obviously, the adders that follow the 

architecture of fig 1 are not the best choice in RNS 

applications, since the delay of the multiplexers makes the 

delay of the modulo 12 n
  channel greater than channels 

of the form
n2 and 12 n

 . The required implementation 

area is also increased substantially when compared against 

the other channels. 

 

III. PROPOSED MODULO 2N+1 ADDERS 
 

 In this section we propose CLA and parallel-prefix adders 

with embedded treatment of zero operands. We first 

analyse the logic of 
zs  and 

*S  , for the adopted number 

representation.operands.Relation 0
12



BA n

, with 

nBA 2,0   , implies that 0 BA   or that   

0, BA and 12  nBA  , or  , or equivalently that    

or  0 BA  0, BA  and
 12  n** BA . 

Therefore, the zero indication bit,
 zs   , of the result should 

be one, when either both operands are 0, or when both 

operands are non-zero but their diminished-one parts are 

complementary. These two cases are expressed by the 

following relation for zs   : 

 

        11   nzzzznzzzzz PbabaPbabas  

  

where 
0211 ... pppP nnn  

 and iii bap **   , 

with 1 , ... ,1 ,0  ni    and the notations   , ,   are 

used for the logical AND, OR and exclusive-OR 

operations respectively. The resulting implementation is 

presented in fig 2. Note that the part of fig 1. which  

produces  
1nP  is not required in the case of diminished-

one adders whose carry propagate signals are defined as 

the exclusive-OR of corresponding operands’ bits. Such 

adders are well known as exclusive-OR adders. On the 

other hand, the logic producing 
1nP   is required in 

inclusive-OR adders, that is, in adders whose carry 

propagate signals are defined as the inclusive-OR of 

corresponding operands’ bits [10]. 

 

 
Fig. 2. The implementation of sz. 

 

For the *S   part of the result we can observe that :If *A  

and  *B  are both non zero, then according to 

a
z

b
z a*

n-1

s
z

b*
n-1 a*

1
b*

1
a*

0
b*

0

P
n-1



IJIREEICE ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

 

    INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 
                        Vol. 4, Issue 6, June 2016 

 

Copyright to IJIREEICE                                                        DOI 10.17148/IJIREEICE.2016.4641                                                              182 

[Zimmermann 1997, 1999] : 

   









otherwise    1

2 if     ,2 mod 
12mod

**

n**n**

*

BA

BABA
S n

or equivalently, in this case  can be computed by adding 

the complement of the carry output ( outc )  of the modulo   

n2 addition of 
*A  and  

*B  back to the sum. Since in this 

case 0 zz ba  , we can instead of 
out

c  , add  

 outzz cba  .If one or both operands are zero, 

  0 outzz cba   and *S  is equal to the modulo  n2

sum of *A  and *B  . That is, in this case *S    can also be 

computed by a modulo  n2  adder with a carry input of 

 outzz cba  . 

 

A. CLA Adders  

All One straightforward way for avoiding oscillations, is 

to compute two possible sums in two distinct modulo   n2

adders and then use function F for choosing between the 
two sums. However, since this arrangement requires two 

sets of n-bit adders and n multiplexers, a better solution is 

to design dedicated modular CLA architectures. This can 

be achieved by engaging the equation of   into the CLA 

unit and simplifying the resulting equations [Agrawal and 

Rao 1978, Efstathiou et al. 1994, Vergos et al. 2002]. Let  

kg  and  
kp  denote the carry generate and propagate 

terms respectively; that is 
kkk bag  ,  and

kkk bap    . The carries  , with  11  nk  

(
1c   is the input carry, while 

1nc   the output carry) in 

an  n-bit CLA adder are computed by unfolding the 

recursive equation 
1 kkkk cpgc and in parallel 

implementing the resulting equations. For the inverted 

carry at each bit position  kc  , we have :  
 

    1111   kkkkkkkkkkkkkk cgtcgpgcpgcpgc  

  

where
kkk bat   .The sum bits are given by 

10  nk  
 

B. Parallel-Prefix Adders With Carry Increment Stage 

 Suppose thatA = An−1An−2 …… . . A0 

And B = Bn−1Bn−2 …… B0represent the two numbers to 

be added and S = Sn−1Sn−2 ……… S0 denotes their sum. 

An adder can be considered as a three-stage circuit. The 

preprocessing stage computes the carry-generate bits Gi, 

the carry-propagate bits Pi, and the half-sum bits Hi, for 

every i; 0≤i≤n-1,according toGi = AiBi,Pi = Ai + Bi,Hi =
Ai⨁Bi ; where . ,+ ,⨁,denote logical AND, OR, and 
exclusive- OR, respectively. The second stage of the 

adder, hereaftercalled the carry computation unit, 

computes the carry signals Ci, for  0≤i≤n-1,using the carry 

generate and carry propagate bits Gi and Pi. The third 

stage computes the sum bits according to Si = Hi⨁Ci−1 

Carry computation is transformed into a parallel prefix 

problem using the * operator, which associates pairs of 

generate and propagate signals and was defined as 

 G, P o G′, P′ = (G + P. G′, P. P′) In a series of 

associations of consecutive generate/propagatepairs (G,P)  

the notation  Gk:j , Pk:j  with k > j, is usedto denote the 

group generate/propagate term produced outof bits k; k – 
1, . . . , j, that is, 

 Gk:j , Pk:j =  Gk , Pk ∘  Gk−1 , Pk−1 ∘ ………∘ (Gj , Pj) 

 

 
Fig. 3 Examples of 8-bit parallel-prefix structures for 

integer adders. (a) Kogge-Stone, (b) Ladner-Fischer, and 

(c) one representative of the 

Knowles family of adders. 

 

The design of sparse adders relies on the use of a sparse 

parallel-prefix carry computation unit and carry-select 

(CS) blocks. Only the carries at the boundaries of the 

carry-select blocks are computed, saving considerable 

amount of area in the carry-computation unit. A 32-bit 

adder with 4-bit sparseness is shown in Fig 3The carry 

select block computes two sets of sum bits corresponding 
to the two possible values of the incoming carry. When the 

actual carry is computed, it selects the correct sum without 

any delay overhead. A possible logic-level implementation 

of a 4-bit carry-select block is shown in Fig  3 

To solve the problem of oscillations in parallel-prefix 

adder architectures, a first solution is to use prefix 

architectures with fast carry processing as proposed in 

[Abraham and Gajski 1980] and then utilize the theory 

developed in [Zimmermann 1997, 1999], for re-entering 

the  expression as the carry input. The resulting 

architecture is outlined in fig 3, presents the gate level 

implementations of the operators used in fig  3. 
 

 
Fig. 4 The architecture of a parallel-prefix adder with a 

carry increment stage. 
 

 
Fig. 5.Gate level implementations of the operators used in 

fig 3. 
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C. Totally Parallel-Prefix Adders 

Figs Instead of having a dedicated single stage for the re-

entering carry,  in [Kalamboukas et al. 2000, Vergos et al. 
2001, 2002] it has been proposed to perform carry 

recirculation at each existing prefix level. In this way the 

need for an extra carry increment stage is cancelled and 

dedicated totally parallel-prefix adder architectures result 

with one less prefix level.  

In the case that the re-entering carry is given by the 

expression  outzz cba   , allowing carry recirculation 

at each existing prefix level, we can get that the carries  
*

ic   of the modulo 12 n   addition are equal to *

iG  , 

where  *

iG  is computed by the prefix equations :  

   

   










 2.-ni0 if    ,,

-1 if     ,,
,

1i1,-n1i1,-nii

1-n1-n**

PGPG

iPG
PG ii 

 

where : 

 PG,   is defined to be equal to   PG,  

baG ,
 and 

baP ,
  , ba  , are respectively the group

baa  ,... ,1 ,   generate and propagate signals for the 

group  , computed by 

       bbaaaababa pgpgpgPG ,...,,, 11,,    . Obviously, 

   aaaa PGPG ,, 0,0,   , and

  zznnn babag   111
 legible. 

 

IV. MODULO𝟐𝐧 ± 𝟏 ADDITION BASICS 

 

A.Modulo2n − 1adders 
The computation of modulo2^n-1addition is, in fact, 

aconditional operation defined as 
 

 A + B mod 2n − 1 

=  
 A + B ,                       A + B < 2n ,
 A + B + 1 mod2nA + B ≥ 2n   

 

 A modulo2^n-1adder can be implemented using an 

integer adder that increments also its sum when the carry 
output is one, that is, when  A+B≥2n. This is also 

equivalent tofeeding the carry-input of the adder with the 

carry-output of the first addition. The conditional 

increment can be implemented by an additional carry 

increment stage as shown in Fig 4.a. In this case, one extra 

level of , cells driven by the carry output of the adder, is 

required. Depending on the implementation of the 

modulo2n − 1   adder, for bitwise-complementary inputs, 

i.e., when A+B=2n-1, the adder may produce an all 1s 

output vector, in place of the expected result which is 

equal to zero. In most applications, this is acceptable as a 
second representation for zero. 

 

V.   KOGGE STONE ADDER 

 

 The Kogge-Stone adder is a parallel prefix form of carry 

look-ahead adder. It generates the carry signals in 

O(log2N) time, and is widely considered as the fastest 

adder design possible. It is the most common architecture 

for high-performance adders in industry. TheKogge-Stone 

adder concept was first developed by Peter M. Kogge and 

Harold S. Stone.  

In Kogge-stone adder, carries are generated fast by 

computing them in parallel at the cost of increased area. 

Tree structures of carry propagate and generate signals in 
8-bit Kogge Stone Adder (KSA) is shown in Fig 5 Carry 

generation network is the most important block in tree 

adders, and it consists of three components such as Black 

cell, Grey cell and Buffer. Black cells are used in the 

computation of both generate and propagate signals. Grey 

cells are used in the computation of generate signals which 

are needed in the computationof sum in the post-

processing stage. Buffersare used to balance the loading 

effect.  

 

 
Fig. 6 bit kogge stone adder (PG)network 

 

A.Working Of Kogge-Stone Adder 
Kogge-Stone Adder has three processingstages for 

calculating the sum bits, they are: 

1. Pre-processing stage 

2. Carry generation (PG) network 

3. Post-processing stage 

The above steps involved in the operationofKogge-Stone 

adder. 

 

VI. ADVANTAGES 

 

1.The reduction of maximum height of Partial Product 
array,which will simplify the partial product reduction 

tree,in terms of delay and regularity of layouts,this is of 

special interest of short bit. 

2.Width multipliers for high performance where short but 

high speed bit 

3.Width  multiplication are common operations. 

 

VII. EXPERIMENTAL RESULT 

 

 
Fig. 7 RTL schematic of top module 

 

Two input values are passed partial products are calculated 

using fast adder output of that will be given to booth 

encoder where the values will be encoded and slected 

values using booth selector where pre fixing and post 

fixing will be done as the result will be signed we use 
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Radix and booth.After all steps we get the modulo 

addition as the output as shown in simulation. 
 

 
Fig. 8 Simulation output waveform 

 

VIII. CONCLUSION 

 

Several architectures had been recently proposed for 

diminished-one modulo  12 n  addition. None of these 

has dealt with the problem of handling zero operands. All 

of them propose to treat zero operands separately. 

Unfortunately, such a treatment leads to slow and area 
consuming implementations. In this paper, by utilizing a 

number representation similar to that of [Agrawal and Rao 

1978], we proposed CLA and parallel-prefix adders able to 

also handle zero operands. Our CLA adders perform 

addition in a single cycle and were derived by engaging 

the equation of the re-entering carry into the carry 

computation equations. The herein proposed parallel-

prefix adders with a carry increment stage offer the same 

logical depth and hence speed as well as the same area 

complexity as the diminished-one adders with a carry 

increment stage proposed in [Zimmermann 1997, 1999], 
with the extra advantage of handling zero operands. The 

proposed totally parallel- prefix adders perform carry re-

circulation at each prefix level and therefore do not need a 

separate carry increment stage; their number of prefix 

levels and therefore their execution speed is the same as 

the fastest modulo 12 n   , modulo 12 n   and modulo 

12 n   diminished-one adders. Translators between the 

adopted number representation and the modulo 12 n  

binary system were finally presented. 
 

IX. FUTURE WORK 
 

In the case of addition, for example, the carrypropagation 

is limited to within a single residue (a few bits). 

Subtraction and multiplication also have good 

benefitsfrom RNS, but we will leave them for future 

works. This design can be more efficient if used in multi-

operandarithmetical operations in a cyclic fashion. The 

wasted time inconversion can be overlapped with the 

operationitself. Definitely, we have to pipeline this design 

to achieve this. Moreover, the reverse conversion is 

carried outonly when the final result   available.Finally, 
fault tolerance implications need further study to quantify 

the benefits in terms of fault coverage and 

systemreliability improvement. Extensions in this area 

include the possibility of encoding DRS pseudoresidues in 

BSD format.In the context of residue checking, this 

increases the overhead (2h instead of h+ 1 check bits for a 

k-bit data word). 
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